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Abstract. This work is dedicated to the development and implementation of a methodology
for crystal structure prediction using genetic algorithms integrated into the Python ASE
library. Crystal structure prediction plays a critical role in materials science, chemistry, and
nanotechnology, enabling the discovery of novel compounds with tailored properties. By
combining the flexibility of ASE with the speed of classical relaxers and the accuracy of DFT-
based methods, our approach significantly reduces computational costs while maintaining
predictive reliability. The methodology was validated on polymorphs of silica (SiO2), where
our system successfully recovered both global and local minima of the energy landscape.
We also explore the integration of neural network relaxers such as MACE and AIMNet2 to
further accelerate the search process. This study lays the groundwork for efficient, scalable,
and accurate predictive modeling of crystalline materials.

Keywords: crystal structure prediction; genetic algorithm; energy landscape; crystalline
silica polymorphs; structure relaxation; ASE; GULP

1 Introduction: The general concept of materials design

Humanity is in constant need of new technologies, which in turn necessitates the development of
novel materials to enable their implementation. However, this progress is often hindered by tra-
ditional iterative approaches to material discovery, which typically require substantial financial
investment, time, and researcher endurance. The advent of personal computing has enabled the
automation of this process by integrating new components, such as computer simulations and
structure prediction [1, 2], into the conventional materials research workflow. As a result, the
current approach to the synthesis of new materials can be represented as a cyclical and iterative
process (Figure 1).

One of the most critical and still insufficiently developed elements of this cycle is the technol-
ogy for structure prediction and synthesis. The key challenges in this area include not only the
speed and accuracy of prediction algorithms, but also the practical parameters of the predicted
results. Ideally, these outcomes should enable straightforward experimental reproduction of the
predicted compounds in a laboratory setting [2].

Our current research focus lies in the field of materials prediction, particularly in improving
the speed and precision of this fascinating and promising process.
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Figure 1. Diagram of the modern materials development process.

2 The problem of computational crystal structure synthesis

As with any scientific problem, it is essential to first establish a foundation of abstract principles.
In the case of computational crystal structure synthesis, these principles include the concept of
a multidimensional energy landscape (Figure 2) and the presence of global and local minima in
that landscape [3].

Figure 2. Multidimensional energy landscapes [3].

The energy landscape can be envisioned as an infinite set of points that form a continuous
surface, where each point corresponds to a specific energy value and thus represents a distinct
atomic configuration. The vertical axis denotes energy, while the remaining axes represent
structural parameters subject to variation. In our case, these parameters include changes in
lattice vectors and the atomic coordinates within the cell.

In the context of structure prediction, the primary objective is to locate the energy minima,
both global and local. The global minimum corresponds to the most stable structure, which is
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most likely to be experimentally synthesized. In contrast, local minima represent metastable
structures that may be realizable under specific experimental conditions.

To identify these minima, a variety of search algorithms are employed, such as basin hop-
ping [4], minima hopping [5], metadynamics [6]. In our work, we use a genetic algorithm (Fig-
ure 3) [7], which enables efficient exploration and analysis of large portions of the energy land-
scape with reasonable precision. The core principles of this algorithm will be described in detail
later, but for now, it is important to note that its successful implementation requires the use of
computational “calculators”. These calculators must be capable not only of evaluating the total
energy of a given structure, but also of performing structural relaxation, that is, optimizing the
atomic configuration to find the nearest local energy minimum.

Figure 3. Genetic algorithm search scheme [7].

3 AGE methodology

Our approach relies on two core components: a genetic algorithm and a relaxation calculator.
In our implementation, the genetic algorithm is provided by the Python-based ASE (Atomic
Simulation Environment) [8] library, while the relaxation procedures are performed using two
calculators: GULP [9] and Quantum ESPRESSO [10] (Figure 4).

Figure 4. AGE methodology [8–10].

GULP offers relatively lower accuracy due to its reliance on classical Coulomb-based poten-
tials [9], but it provides significantly faster calculations. In contrast, Quantum ESPRESSO is
based on density functional theory (DFT) [11,12], offering much higher accuracy at the cost of
considerably longer computation times.

Throughout the execution of the algorithm, we primarily rely on GULP to perform rapid
evaluations over a number of generations (populations). The algorithm is terminated based on a
predefined convergence criterion – in our case, the repetition of structures in the energy-fitness
diagram, which will be discussed in detail later.

As a result, we obtain a pool of candidate structures that exhibit a symmetry and geometry
resembling that of the target (reference) phase. These structures are then subjected to a final
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relaxation using Quantum ESPRESSO. It is worth noting that at this stage, only a few dozen
calculations are typically required, as opposed to the hundreds performed during the initial
GULP-based exploration, significantly reducing the overall computational cost.

4 Flowchart of the genetic algorithm

The genetic algorithm is an iterative process [8] (Figure 5). Each iteration is referred to as a
generation (or population). The initial population consists of randomly generated structures;
when the energy of these structures is calculated, it yields a random distribution of points
throughout the energy landscape.

Figure 5. Iterative genetic algorithm [7,8].

The next step involves evaluating and ranking these structures based on their energies. To
do this, each structure undergoes relaxation (as discussed earlier), and its final relaxed energy
is calculated. The structures are then sorted according to energy, with the lowest energy corre-
sponding to the most stable configuration.

The subsequent population is formed by combining a certain percentage of the best-perfor-
ming structures from the previous generation, a portion of mutated structures (i.e., previously
selected structures modified via mutation operators), and a fraction of newly generated random
structures (analogous to those in the first population). The relaxation-evaluation-selection cycle
is then repeated.

Mutation operators play an important role in this process by enabling exploration of local
minima near the parent structures. They introduce controlled perturbations that help the
algorithm escape local traps and further sample the surrounding energy landscape.

5 Results for crystalline silica

To validate and confirm the effectiveness of our methodology, we selected a material that clearly
demonstrates the presence of global and plenty of local minima in the energy landscape. Silicon
dioxide (SiO2) [13] was chosen for this purpose due to its rich polymorphism (Figure 6). In
particular, the stable phase under ambient conditions – 𝛼-quartz – serves as the global minimum,
while metastable phases such as 𝛽-quartz, 𝛼- and 𝛽-cristobalite, tridymite, keatite, coesite, and
stishovite represent local minima.

The results of the population generations are conveniently visualized as diagrams (Figure 7),
where the energy of each structure is plotted against its population number and position within
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Figure 6. Phase diagram of silica [13].

Figure 7. Results of silica population generation. Green circles represent randomly created structures;

pink – best structures from previous population; blue, yellow and red – produced by pairing, softmutation

and strain mutation variational operators; black – structures, removed from search because of inadequate

parameters.

that population. Each structure is represented as a colored dot. The initial randomly generated
population is shown in green, the best-performing structures are shown in purple, blue, yellow,
and red (those generated through mutation operators), and black dots represent structures that
were discarded due to an excessively large unit cell volume.

When comparing all four plots, a consistent pattern emerges: distinct horizontal lines formed
by structures from different generations, each located at a specific energy level. These lines are
visual representations of the local and global minima in the energy landscape. In this example,
the lowest line corresponds to 𝛼-quartz, while the higher ones represent local minima correspond-
ing to 𝛽-quartz, 𝛼- and 𝛽-cristobalite, tridymite, keatite, coesite, and stishovite. All structures in



6 B.Y. Semeniuk, O.D. Feia

Figure 8. Dependence of calculation quality on resource consumption [17].

this phase diagram were successfully identified except coesite, which was not recovered because
of its large unit cell size (we did not provide such massive calculations for this system).

To facilitate comparison, we compiled the results into Table 1, matching our predicted struc-
tures with the reference structures obtained from the Materials Project database [14]. Each
structure in the table was carefully relaxed with Quantum ESPRESSO with the same input pa-
rameters to be sure our comparison is correct. We quantitatively evaluated structural similarity
using the cosine distance between the fingerprint vectors of each structure (a cosine value of zero
indicates identical structures). On the basis of this analysis, we conclude that the structures
generated by our method are identical to the known reference phases.

Name 𝑎 𝑏 𝑐 (Å) 𝛼 𝛽 𝛾 Space group Energy/atom (Ry) Cosine distance

𝛼-quartz 4.961 4.961 5.452 90∘ 90∘ 120∘ 152 −42.767192 0.0

4.96 4.96 5.452 90∘ 90∘ 120∘ 152 −42.767615

𝛽-quartz 5.081 5.081 5.562 90∘ 90∘ 120∘ 180 −42.76719 0.0039

5.081 5.081 5.562 90∘ 90∘ 120∘ 180 −42.767187

𝛽-tridymite 5.254 5.254 8.575 90∘ 90∘ 120∘ 194 −42.766982 0.0

5.254 5.254 8.575 90∘ 90∘ 120∘ 194 −42.766976

𝛽-cristobalite 7.430 7.430 7.430 90∘ 90∘ 90∘ 227 −42.766908 0.0355

7.430 7.430 7.430 90∘ 90∘ 90∘ 227 −42.766929

stishovite 4.192 4.192 2.6805 90∘ 90∘ 90∘ 136 −42.762639 0.0069

4.193 4.193 2.680 90∘ 90∘ 90∘ 136 −42.762690

fluorite 4.543 4.543 4.543 90∘ 90∘ 90∘ 225 −42.684103 0.02

4.545 4.545 4.545 90∘ 90∘ 90∘ 225 −42.684113

hydrophilite 4.082 5.039 4.497 90∘ 90∘ 120∘ 60 −42.581702 0.0025

4.082 5.041 4.497 90∘ 90∘ 120∘ 60 −42.758837

Table 1. Results of evolutionary search (in pairs of structures – top row) and relaxation of structures

from Materials Project (bottom).

6 Prospects and future improvements

The presence of two relaxers significantly reduced computation time and proved to be an effec-
tive approach for solving problems related to finding global and local minima. However, this
introduced other challenges, particularly the need to create input files for the GULP relaxer,
which greatly limits its usability.
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If we plot the performance of the calculator against its resource consumption (Figure 8), our
two relaxers occupy opposite corners. GULP is fast, but the least accurate, while Quantum
ESPRESSO, as a more accurate DFT method, requires substantial resources. However, neural
networks have managed to reduce resource consumption. This happens through training on
datasets computed by DFT methods, which essentially means that the accuracy is limited to
that of the initial training set, but the speed of machine learning is gained.

Therefore, the decision was made to apply a machine learning-based approach. As it turned
out, such tools already exist, and there is even some variety available. We have chosen MACE [15]
and AIMNet2 [16] pseudopotentials and integrated them in place of GULP within the genetic
algorithm, and are currently in the process of tuning these programs.

7 Conclusions

We have implemented a methodology for predicting crystal structures using Python along with
the GULP and Quantum Espresso relaxers. The developed approach was successfully validated
on a range of crystalline systems. In particular, the study of silica demonstrated excellent results,
as we were able to reproduce most of the structures presented in the phase diagram.

In future work, we plan to integrate MACE and AIMNet2, neural networks that will be used
for structural relaxation and energy calculations. This implementations are expected to improve
the accuracy of energy computations compared to GULP, while maintaining high processing.
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Анотацiя. Дана робота присвячена розробцi та реалiзацiї методологiї передбачення
кристалiчних структур за допомогою генетичних алгоритмiв, якi iмплементованi в бi-
блiотеку Python ASE. Застосування генетичних алгоритмiв для передбачення криста-
лiчних структур має великий потенцiал у рiзних галузях, зокрема у матерiалознав-
ствi та нанотехнологiях. Основною метою є розробка ефективного iнструменту, який
дозволить автоматизувати та прискорити процес пошуку оптимальних кристалiчних
структур для конкретних застосувань.

Ключовi слова: передбачення кристалiчних структур; генетичний алгоритм; енерге-
тичний ландшафт; кристалiчнi полiформи кремнезему; релаксацiя структури; ASE;
GULP
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