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Abstract. In this paper, we perform a Bayesian inference of the parameters of the Starobin-
sky inflationary model with subsequent reheating stage using the MCMC method and the
observed data on the anisotropy of the cosmic microwave background collected by the Planck
collaboration and on baryonic acoustic oscillations. The reheating stage is modeled by a sin-
gle parameter 𝑅reh, which contains a combination of the reheating temperature 𝑇reh and the
effective equation of state during reheating 𝜔̄reh. Using the modified Boltzmann code CLASS
and the MontePython program with the GetDist package, we perform a direct analysis of
the space of model parameters and obtain their posterior distributions. By computing the
Kullback–Leibler divergence, we estimate the information gained by the parameter inference
from the observed data. In the proposed parametrization, we achieve 7.73 bits of informa-
tion about the inflaton potential amplitude and 1.64 bits of information about the reheating
parameter. The results are compared with those existing in the literature implying that
the specification of inflationary model allows to better constrain the reheating stage than in
the model-independent approach to inflation. Finally, we draw constraints for the reheating
temperature and average equation of state. Although the former can vary within 16 orders
of magnitude (in the 95% credible interval), for the latter there is a clear preference for
the values larger than zero, meaning that the usual dust-like equation of state 𝜔̄reh = 0 is
excluded at more than 2𝜎 level.

Keywords: inflation; reheating; MCMC; CMB; Planck; Bayesian inference; CLASS; Mon-
tePython.

1 Introduction

Modern physicists are well aware of the picture of the evolution of the Universe, starting from
the radiation dominated era (RD), during which the Robertson–Walker scale factor 𝑎(𝑡) grew
according to the law

√
𝑡. However, for the successful realization of the evolution of the Universe

within the framework of the standard Big Bang model, physically unlikely initial conditions are
imposed on the Universe at its very origin, which lead to serious cosmological problems, such
as the horizon problem, the flatness problem, the entropy problem and the problem of initial
inhomogeneities (for more details see [24]).

A solution to these problems is provided by the inflationary model, which was proposed by
a number of authors in 1979–1981 [10, 20, 22], and developed by Alan Guth in 1981 [8]. The
main idea of the inflationary model is the presence of accelerated expansion of the Universe,
which took place before the RD era. At this stage, the equation of state was approaching the
vacuum 𝑝 ≈ −𝜌, the Universe was expanding rapidly and, finally, became homogeneous on large
scales and spatially flat with high accuracy.

mailto:dmitriy.zharov.02@knu.ua
https://orcid.org/0009-0000-6439-0958
mailto:oleksandr.sobol@knu.ua
https://orcid.org/0000-0002-6300-3079
https://doi.org/10.3842/kau.2025.phys.02


2 D.S. Zharov, O.O. Sobol

The most remarkable aspect of inflationary theories is that they lead to a natural quantum
mechanical mechanism for the origin of cosmological fluctuations observed in cosmic microwave
background (CMB), large-scale structures (galaxy clusters, voyages, etc.), and potentially in
the gravitational wave background (which is predicted to be detected by the LIGO/VIRGO
collaboration [15] and PTA pulsar observations [23]).

The key role in inflationary models testing is played by measurements of the anisotropy
of the cosmic microwave background, starting with the first detection by the COBE satellite
(NASA) [5], the measurement of Doppler peaks by the WMAP satellite [25] and ending with
the latest data from the Planck mission [19]. The detection of the CMB polarization [11] was
another important achievement and will be of key importance in future studies.

However, to build a complete picture of the early Universe evolution, it is also important
to understand how the inflationary stage transitions into the RD era. At the end of inflation,
the inflaton is usually thought to oscillate around its minimum potential, gradually decaying
and transferring energy to the relativistic plasma. This post-inflationary process, which fills the
Universe with ordinary matter, is known as the reheating. The traditional approach to describing
the reheating is based on the fact that inflationary oscillations, which can be interpreted as a set
of inflationary particles with zero momentum, cause the formation of elementary particles of
the Standard Model. Interacting with each other, they come to a state of thermodynamic
equilibrium, launching the standard Big Bang cosmology [24].

Usually, the literature neglects the post-inflationary reheating stage, considering it to be in-
stantaneous. However, as shown by the authors of [18], the observed data already carry a certain
amount of information about this stage (1.3± 0.18 bits). This means that the interpretation of
the observed data without taking into account the reheating stage can lead to a distortion of
the picture of the Universe evolution.

In this paper, we perform a Bayesian parameter inference of the Starobinsky inflation model
with the reheating stage using the MCMC algorithm and the observed data on the anisotropy
of the CMB collected by the Planck collaboration [19] and on baryon acoustic oscillations [6].

This paper is organized as follows: in Section 2, we give a brief theoretical background on
inflationary theories and the reheating phase; in Section 3, we formulate the mathematical prob-
lem and outline the features of the numerical methods used; in Section 4, we present the results
and corresponding plots and analyze them; in Section 5, we summarize our work. Through-
out, we will work in the natural system of units 𝑐 = ℏ = 𝑘B = 1 and use the Planck mass
𝑀Pl = 1.22× 1019 GeV.

2 Literature review

2.1 Inflation model

To realize the inflationary stage, it is enough to assume the existence of a scalar field 𝜑, called
the inflaton, such that at some early time it takes a value at which the potential 𝑉 (𝜑) is large
but almost constant [24]. Initially, this scalar field ‘slides’ down with the potential very slowly,
so that the Hubble parameter decreases slowly enough, and before the inflationary field changes
significantly, more or less exponential inflation has already occurred in the Universe.

There are several hundred inflationary models [17], but among this variety, models with
Starobinsky potential occupy a special place. The Starobinsky [22] model was one of the first
models of inflation to be proposed. It is characterized by an action that contains the Einstein–
Hilbert term together with an additional term that depends on the second order of scalar cur-
vature

𝑆 = −
𝑀2

Pl

16𝜋

∫︁
d4𝑥

√
−𝑔

[︂
𝑅− 𝑅2

6𝑀2

]︂
,
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where 𝑅 denotes the scalar Ricci curvature, 𝑔 is the determinant of the metric 𝑔𝜇𝜈 , and 𝑀 is
the free parameter of the Starobinsky model expressed in units of mass.

The Starobinsky action can be rewritten in a form that explicitly includes the scalar field
action term by using a conformal metric transformation

𝑔𝜇𝜈 → exp

(︂
−4

√︂
𝜋

3

𝜑

𝑀Pl

)︂
𝑔𝜇𝜈 .

After that, the action can be written in the form

𝑆 =

∫︁
d4𝑥

√
−𝑔

[︂
−
𝑀2

Pl

16𝜋
𝑅+

1

2
𝜕𝜇𝜙𝜕𝜇𝜙− 𝑉 (𝜙)

]︂
,

where 𝑉 (𝜙) is the potential of a scalar field of the form

𝑉 (𝜑) = 𝑉0

[︂
1− exp

(︂
−4

√︂
𝜋

3

𝜑

𝑀Pl

)︂]︂2
. (1)

Here 𝑉0 =
3

32𝜋𝑀
2
Pl𝑀

2. It is this parameter that we will use as a free parameter of the model for
Bayesian inference.

In this paper, we study the mechanism of inflation through the Starobinsky potential. This
choice is motivated by the fact that the Starobinsky inflation model arises from simple physical
considerations and does not use ad-hoc parameters. It can also be shown that the Higgs inflation
potential [2] (which is also a very natural candidate) in the large-coupling limit reduces to the
same form [17]. Thus, using this potential, we can simultaneously investigate the two most
natural models of inflation: Starobinsky and Higgs.

2.2 Reheating

The theory of inflation also requires a stage of post-inflationary reheating, during which the
scalar inflationary field decays into Standard Model particles and the stage of the hot Big Bang
begins.

The reheating stage can be modeled using two parameters: the reheating temperature 𝑇reh

and the effective equation of state 𝜔̄reh, which is defined as follows [7]:

𝜔̄reh ≡ 1

𝑁reh −𝑁𝑒

∫︁ 𝑁reh

𝑁𝑒

𝜔reh(𝑁) d𝑁,

where 𝜔reh(𝑁) = 𝑝
𝜌 is the equation of state, 𝑁𝑒 and 𝑁reh are the number of 𝑒-folds at the end of

inflation and reheating, respectively.
Next, we need to calculate the number of 𝑒-folds from the moment when the reference mode

goes beyond the horizon to the end of inflation 𝑁* = ln(𝑎𝑒𝑎* ). The condition for the mode with

momentum 𝑘* to go beyond the horizon is defined as 𝑘*
𝑎*𝐻*

= 1. Let us write this expression as
follows:

𝑘*
𝑎0

𝑎0
𝑎reh

𝑎reh
𝑎end

𝑎end
𝑎*

1

𝐻*
= 1.

According to the entropy conservation law

𝑠 = 𝑔
(𝑠)
*,0𝑎

3
0𝑇

3
0 = 𝑔*,reh𝑎

3
reh𝑇

3
reh,

where 𝑠 is the entropy density, 𝑔* is the effective number of degrees of freedom, 𝑔
(𝑠)
* is the

effective number of entropic degrees of freedom, 𝑇 is the temperature, 𝑎 is the scale factor.
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Then,

𝑎0
𝑎reh

=
𝑇reh

𝑇0

(︃
𝑔*,reh

𝑔
(𝑠)
*,0

)︃ 1
3

.

Using the energy conservation law

𝜌̇+ 3𝐻(𝜌+ 𝑝) = 0,

we can relate the scaling factors and energies at the end of inflation and reheating through 𝜔̄reh

𝑎reh
𝑎𝑒

=

(︂
𝜌reh
𝜌𝑒

)︂− 1
3(1+𝜔̄reh)

.

All the energy at the end of the reheating is transferred to ultra-relativistic particles, so the
energy density at the end of the reheating can be written as

𝜌reh =
𝜋2

30
𝑔*,reh𝑇

4
reh.

So,

𝑎reh
𝑎𝑒

=

(︂
𝜋2

30
𝑔*,reh

𝑇 4
reh

𝜌𝑒

)︂− 1
3(1+𝜔̄reh)

.

Thus, the number of 𝑒-foldings from the moment when the reference mode goes beyond the
horizon until the end of inflation is determined by the following expression

𝑁* = ln

[︃
𝐻*
𝑀Pl

𝑎0𝑀𝑃𝑙

𝑘*

𝑇0

𝑇reh

(︁𝑔*,reh
𝑔
(𝑠)
*,0

)︁ 1
3

(︂
𝜋2

30
𝑔*,reh

𝑇 4
reh

𝜌𝑒

)︂ 1
3(1+𝜔̄reh)

]︃
.

As shown by the authors of [18], for a complete description of the reheating process, it is
sufficient to consider a certain combination of the parameters 𝑇reh and 𝜔̄reh, rather than each of
them separately. Therefore, we will use the so-called rescaled reheating parameter

𝑅reh =
𝑎𝑒
𝑎reh

(︂
𝜌𝑒
𝜌reh

)︂ 1
4 𝜌

1
4
𝑒

𝑀Pl
=

(︂
𝜋2

30
𝑔*,reh

𝑇 4
reh

𝜌𝑒

)︂ 1
3(1+𝜔̄reh) 𝜌

1
2
𝑒(︀

𝜋2

30 𝑔*,reh𝑇
4
reh

)︀ 1
4𝑀Pl

. (2)

Finally, using the parameter 𝑅reh and the Friedman equation 𝜌𝑒 =
3
8𝜋𝐻

2
𝑒𝑀

2
𝑃𝑙, we obtain the

expression for determining the required number of 𝑒-folds

𝑁* = 𝑁0 + ln𝑅reh + ln

(︂
𝐻(𝑁*)

𝐻𝑒

)︂
, (3)

where

𝑁0 = ln

⎛⎝𝑇0𝑎0
𝑘*

(𝑔
(𝑠)
0,*)

1
3

𝑔
1
12
reh,*

𝜋
√
8√

3 4
√
30

⎞⎠ ≈ 62.7.

This expression is an implicit equation in 𝑁*, the solution of which depends on the dynamics
of the inflaton field. The equation (3) allows us to obtain the exact value of the number of
𝑒-foldings between the moment when the reference mode goes beyond the horizon and the end
of inflation.
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2.3 Cosmic microwave background

As noted above, while we do not yet have reliable observational evidence for the inflationary
model, we do have cosmic sources of information that can impose constraints on inflation and
reheating models. The most important source of information is the relic radiation, or cosmic
microwave background, the anisotropy of which is studied by the Planck collaboration (ESA
mission).

The CMB is a residual electromagnetic radiation that originated about 380 000 years after
the Big Bang starts, during the recombination epoch, when the temperature of the Universe
dropped enough to form neutral hydrogen atoms, causing photons to stop interacting with
matter and start to spread freely in space. Measurements of the CMB show that it corresponds
to the spectrum of an ideal blackbody with a temperature of 𝑇0 ≈ 2.725 K, demonstrating high
isotropy with fluctuations at the level of 𝛿𝑇

𝑇 ∼ 10−5. However, it is this small anisotropy that is
of the greatest scientific importance, as it constrains the parameters of inflation, the properties
of decaying or annihilating particles, primary black holes, topological defects, primary magnetic
fields and other exotic physics.

For the quantitative analysis, the Planck collaboration [19] introduces two-point angular
correlation functions and performs a harmonic expansion of the CMB map. Letting 𝑇 , 𝑄 and 𝑈
denote the intensity and Stokes parameters for the polarization, we define

𝑎ℓ𝑚 =

∫︁
d𝑛̂ 𝑌 *

ℓ𝑚(𝑛̂)𝑇 (𝑛̂),

𝑎𝐸ℓ𝑚 ± 𝑖𝑎𝐵ℓ𝑚 =

∫︁
d𝑛̂±2𝑌

*
ℓ𝑚(𝑛̂)(𝑄± 𝑖𝑈)(𝑛̂),

where ±2𝑌ℓ𝑚 are spherical spin harmonics proportional to the Wigner functions.
For the case of statistical isotropy, it is necessary that the quantities ⟨𝑎*ℓ𝑚𝑎ℓ′𝑚′⟩ should be

diagonal and depend only on ℓ. Then we write

⟨𝑎𝑋ℓ𝑚𝑎𝑌ℓ′𝑚′⟩ = 𝐶𝑋𝑌
ℓ 𝛿ℓ′ℓ𝛿𝑚′𝑚,

where 𝑋,𝑌 ∈ {𝑇,𝐸,𝐵} denote the temperature and polarization modes, and 𝐶𝑋𝑌
ℓ are the

angular power spectra. It is also convenient to determine the angular power spectra

𝐷𝑋𝑌
ℓ =

ℓ(ℓ+ 1)𝐶𝑋𝑌
ℓ

2𝜋
. (4)

The autospectrum 𝐷𝑋𝑋
ℓ shows the approximate contribution of the logarithmic interval of

the multipoles centered on ℓ to the fluctuation variance. It thus reflects the relative importance
of different contributions to the signal as a function of scale.

It is the angular power spectra that carry information about the anisotropy of the relic
radiation, and it is these that we will use as data for the Bayesian inference.

2.4 Bayesian inference

Bayesian inference is a method of statistical inference based on the use of Bayes theorem to
estimate model parameters. The basic idea is to update the probabilities of the model parameters
based on new experimental data. Bayes theorem defines the relationship between the a posteriori
probability of the parameters 𝜃 given the available data 𝐷, the likelihood and the a priori
distribution:

𝑃 (𝜃 | 𝐷) =
𝑃 (𝐷 | 𝜃)𝑃 (𝜃)

𝑃 (𝐷)
,

where
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� 𝑃 (𝜃 | 𝐷) is a posteriori distribution of the model parameters (the probability of the
parameters 𝜃 after taking into account the data 𝐷);

� 𝑃 (𝐷 | 𝜃) is the likelihood (probability of obtaining the observed data 𝐷 with the given
parameters 𝜃);

� 𝑃 (𝜃) is a priori distribution of parameters (information about the parameters before ob-
taining new data);

� 𝑃 (𝐷) is evidence, which acts as a normalization factor and is calculated as an integral of
the likelihood over all possible values of the parameters:

𝑃 (𝐷) =

∫︁
𝑃 (𝐷 | 𝜃)𝑃 (𝜃) d𝜃.

The Bayesian approach allows not only to estimate the values of the parameters, but also
to calculate the uncertainty in their values in the form of a complete posterior distribution.
However, for complex models with many parameters, finding the integral 𝑃 (𝐷) is usually a com-
putationally expensive task.

To avoid calculating this integral, the Markov chain Monte Carlo (MCMC) method is used.
MCMC allows you to generate a set of random samples from a posterior distribution without
having to calculate the proof 𝑃 (𝐷).

The MCMC algorithm builds a Markov chain – a sequence of parameters values 𝜃1, 𝜃2, 𝜃3, . . . –
such that each new state depends only on the previous one. In the equilibrium state, the density
of points in the parameter space which belong to the chain approaches the posterior distribution
𝑃 (𝜃 | 𝐷).

The most common implementation of the MCMC method is the Metropolis–Hastings algo-
rithm. At each step, a new value of 𝜃′ is generated from the propositional distribution 𝑞(𝜃′ | 𝜃),
and its acceptance is performed with probability

𝐴 = min

(︂
1,

𝑃 (𝐷 | 𝜃′)𝑃 (𝜃′)𝑞(𝜃 | 𝜃′)
𝑃 (𝐷 | 𝜃)𝑃 (𝜃)𝑞(𝜃′ | 𝜃)

)︂
.

If the new value is accepted, then 𝜃𝑛+1 = 𝜃′, otherwise 𝜃𝑛+1 = 𝜃𝑛. For a more detailed intro-
duction to the MCMC method, we refer the reader to [21].

3 Aims and numerical methods review

We aim to study the parameter space of the Starobinsky inflation model (1) with a reheat-
ing 𝜃 = (𝑉0, 𝑅reh) using the MCMC method. Unlike the authors of [18], who use a model-
independent approach to inflation stage, we apply the MCMC algorithm directly to the param-
eters 𝑉0, 𝑅reh. We compare the posterior distributions obtained with their results. And we
will conclude whether this approach gives results different from the inflation model-independent
approach and whether it is worth using.

To do this, we use the Boltzmann code CLASS [3,13], which solves all the Universe background
dynamics, and the MontePython program [1, 4], which implements the MCMC algorithm. We
analyze the resulting chains using the capabilities of the GetDist package [14].

By default, CLASS does not take into account the reheating stage. Therefore, we modified the
CLASS code by implementing the reheating stage in the primordialmodule by the equation (3).

The data against which we will compare our model are the angular spectra (4) of temperature
(TT), polarization (TE and EE) and lensing (𝜑𝜑), which are contained in the likelihood func-
tions ‘Planck highl TTTEEE’, ‘Planck lowl EE’, ‘Planck lowl TT’, ‘Planck lensing’ [19], and
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the baryon acoustic oscillation observations (BAO) [6] contained in the likelihood functions
‘bao boss dr12’, ‘bao smallz 2014’.

As a priori distributions, we take homogeneous distributions on the logarithmic scale, includ-
ing a wide range of values of ln𝑅reh ∈

[︀
−46.15 + 1

3 ln
(︀𝜌end
𝑀4

Pl

)︀]︀
and ln𝑉0 ∈ [−150,−28] in Planck

masses. These values are due to the fact that the reheating that occurs after inflation requires
that 𝜌reh ≤ 𝜌end, while we expect the average equation of state of the Universe during this
period to satisfy the condition −1/3 < 𝜔̄reh < 1, where the lower bound guarantees that infla-
tion has stopped. The requirement to avoid disrupting Big Bang nucleosynthesis imposes the
constraint 𝜌reh > 𝜌nuc, and we set the lower bound at 𝜌nuc = 𝑔*,nuc

𝜋2

30𝑇
4
nuc with 𝑇nuc = 10MeV.

The equation (2) and the condition 𝜌end < 𝑀4
Pl give the widest possible a priori distribution for

the reheating parameter ln𝑅reh =
[︀
−46, 15 + 1

3 ln
(︀𝜌end
𝑀4

Pl

)︀]︀
[18]. The choice of the upper limit for

ln𝑉0 = −28 is due to the fact that at higher values of the parameter, the agreement with the
Planck Collaboration data becomes impossible.

In addition, the Planck Collaboration likelihood functions require consideration of 21 ‘nui-
sance’ parameters, which have a certain impact on the rate of chain convergence. We choose the
standard distributions for these parameters proposed by the Planck Collaboration as a priori
distributions.

4 Results and discussion

As a result of the analysis of Markov chains of five million points, we obtained posterior dis-
tributions for the parameters ln𝑅reh and ln𝑉0, which are shown in Figure 1. Also, the best fit
values, mean values with standard deviation, and 95% credible limits for ln𝑅reh and ln𝑉0 are
shown in Table 1.

Param best-fit mean±𝜎 95% lower 95% upper

ln𝑅reh −6.8916 −3.077+4.6
−4.3 −10.9 5.4

ln 𝑉0

𝑀4
Pl

−29.34 −29.47+0.14
−0.15 −29.7 −29.2

Table 1. Best fit values, mean values with standard deviation and 95% credible limits for ln𝑅reh and

ln𝑉0. The likelihood function was maximized to − lnℒmin = 1402.57, which corresponds to the minimum

value for the function 𝜒2 = 2805.14.

Figure 1 shows that within ln𝑉0 ∈ [−29.8,−29.1] the parameters ln𝑅reh and ln𝑉0 are linearly
dependent, the calculated correlation coefficient reaches −1, which indicates that the contribu-
tion of the parameters ln𝑅reh and ln𝑉0 to the dynamics of the Universe expansion is inversely
proportional within these limits.

Also, from Table 1 we can conclude that the observed data give rather strict constraints on
the parameter ln𝑉0, but the constraints on the parameter ln𝑅reh are very weak: 𝑅reh can take
values within 8 orders of magnitude.

We can estimate the amount of information about the parameters of our model provided by
the observed data using the Kullback–Leibler divergence [12]:

𝐷reh
KL =

∫︁
𝑃 (ln𝑅reh | 𝐷) ln

𝑃 (ln𝑅reh|𝐷)

𝑃 (ln𝑅reh)
d ln𝑅reh,

𝐷inf
KL =

∫︁
𝑃 (ln𝑉0 | 𝐷) ln

𝑃 (ln𝑉0|𝐷)

𝑃 (ln𝑉0)
d ln𝑉0.

These values are a measure of how much the obtained posterior distributions differ from the
corresponding a priori distributions. For our model, we calculated the values of 𝐷reh

KL ≈ 1.64,
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Figure 1. The two-dimensional posterior distribution for the parameters ln𝑅reh and ln𝑉0 obtained by

statistical analysis of Planck 2018 and BAO data. The light blue color indicates the 95% credible region,

and the blue color indicates the 68% credible region.

𝐷inf
KL ≈ 7.73 in bits. Thus, although the data contain much more information about the inflation

parameter 𝑉0, the value of 𝐷reh
KL ≈ 1.64 is already large enough to conclude that it is necessary

to take into account the model of non-instantaneous reheating when considering the evolution
of the Universe, which is consistent with the results of the authors of [18]. However, by applying
the MCMC algorithm directly to the model parameters, we were able to obtain more information
about the reheating parameter 𝑅reh than they did using a model-independent approach. They
obtained the result 𝐷reh

KL ≈ 1.35.

From the obtained posterior distribution of the parameter ln𝑅reh, we can calculate the distri-
butions for the parameters ln𝑇reh and 𝜔̄reh by performing a much less computationally expensive
MCMC algorithm. The results are shown in Table 2.

Param best-fit mean±𝜎 95% lower 95% upper

ln 𝑇reh
𝑀Pl

−44.6460 −30.861+13.0
−12.4 −50.1 −10.6

𝜔reh 0.6715 0.579+0.2
−0.2 0.0394 0.963

ln 𝑉0

𝑀4
Pl

−29.56 −29.43+0.11
−0.11 −29.7 −29.2

Table 2. Best fit values, means with standard deviation, and 95% limits for ln 𝑇reh

𝑀Pl
, 𝜔̄reh, and ln 𝑉0

𝑀4
Pl
.

We obtain that the reheating temperature can vary within 16 orders of magnitude (in the
95% credible interval), but for average equation of state there is a clear preference for the values
larger than zero, meaning that the usual dust-like equation of state 𝜔̄reh = 0 is excluded at more
than 2𝜎 level.
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5 Conclusions

Before the RD era, the evolution of the early Universe is defined by an inflationary phase and a
reheating phase. The physics of inflation has been actively studied and is already tightly con-
strained by observations such as the CMB anisotropy, but the reheating is not always taken into
account as a key transition stage between inflation and the RD era. In this paper, we investigate
the constraints on the parameters of the Starobinsky potential model with subsequent reheating
imposed by the observed data on the CMB anisotropy and baryonic acoustic oscillations.

The observed data strictly constrain the potential parameter ln𝑉0, since the mean value and
95% credible interval are small

(︀
−29.47+0.15

−0.15

)︀
. On the contrary, for ln𝑅reh the constraints are

much weaker, which means that a wide range of values of the reheating parameter is possible,
covering about 8 orders of magnitude.

The value of the Kullbak–Leibler divergence for ln𝑅reh is 𝐷reh
KL ≈ 1.64 bits. This means that

although the constraints on this parameter are weak, the data obtained still contain enough
information to confirm the need to take into account the non-instantaneous reheating stage in
cosmological models.

The obtained divergence value of 𝐷reh
KL ≈ 1.64 bits is higher than in previous studies where

a model-independent approach to inflation was used (𝐷reh
KL ≈ 1.35) [18]. This indicates that

MCMC estimation directly on the model parameters can provide more information about the
parameter 𝑅reh.

At the same time, for the reheating temperature ln𝑇reh, the 95% credible interval covers
a huge range (from −49.1 to −10.6), which indicates a serious uncertainty in this parameter.
The average value of the effective state parameter during reheating 𝜔̄reh = 0.591 indicates that
reheating probably occurred in a medium with a tighter pressure-energy density dependence than
for conventional radiation (𝜔reh = 1/3). However, the 95% credible limits for 𝜔̄reh also cover
a fairly wide range (from 0.0394 to 0.966), which indicates some uncertainty in the physical
conditions of the reheating stage.

Thus, our results confirm the importance of taking the reheating stage into account in cos-
mological models. Despite the fact that the observed data do not yet provide strict constraints
on the reheating parameters, the influence of this stage cannot be neglected. From the Planck
2018 and BAO data, it is already possible to obtain approximately 1.64 bits of information
about the reheating parameter ln𝑅reh. In addition, there are indications that directly apply-
ing the MCMC method directly to the model parameters allows us to obtain more information
compared to inflation model-independent approaches.

Note added: While finalizing this work, new data from the Atacama cosmology telescope
(ACT) [16] was released, providing important constraints relevant to Starobinsky inflation. Mo-
tivated by this, we performed a Bayesian analysis of both Starobinsky and Higgs inflation models
including the reheating phase, incorporating the ACT observational data. The results of this
analysis are presented in [9].
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Анотацiя. У данiй роботi проведено баєсiвський аналiз параметрiв моделi iнфляцiї
Старобiнського з розiгрiвом з використанням методу MCMC i спостережними даними
про анiзотропiю релiктового випромiнювання, зiбраними колаборацiєю Planck, i про
барiоннi акустичнi осциляцiї. Стадiю розiгрiву змодельовано одним параметром 𝑅reh,
який мiстить у собi комбiнацiю температури розiгрiву 𝑇reh та ефективного рiвняння ста-
ну речовини впродовж розiгрiву 𝜔̄reh. За допомогою модифiкованого больцманiвського
коду CLASS i програми MontePython з пакетом GetDist зроблено прямий аналiз просто-
ру параметрiв моделi та отримано їх постерiорнi розподiли. За допомогою дивергенцiї
Кульбака–Ляйблера, оцiнено кiлькiсть iнформацiї, отриманої в результатi аналiзу па-
раметрiв зi спостережних даних. У запропонованiй параметризацiї отримано 7.73 бiта
iнформацiї про амплiтуду потенцiалу iнфлатона та 1.64 бiта iнформацiї про параметр
розiгрiву. Отриманi результати порiвняно з тими, що вже є в лiтературi, i вони вказу-
ють на те, що специфiкацiя моделi iнфляцiї дозволяє краще обмежити етап розiгрiву,
нiж у модельно-незалежному пiдходi до iнфляцiї. Нарештi, встановлено обмеження на
температуру розiгрiву та середнє рiвняння стану. Хоча перша може змiнюватися в ме-
жах 16 порядкiв величини (у 95% довiрчому iнтервалi), для другого спостерiгається
чiтка перевага значень, бiльших за нуль, що означає, що звичайне рiвняння стану пилу
𝜔̄reh = 0 виключається з бiльш нiж 2𝜎 рiвнем значущостi.

Ключовi слова: iнфляцiя; розiгрiв; MCMC; релiктове випромiнювання; Planck; баєсiв-
ський аналiз; CLASS; MontePython.
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